(Key)



## **Grade 7 Common Mathematics Assessment**

June 12, 2013

Section A: No Calculator Permitted

| Name:                   |  |  |  |
|-------------------------|--|--|--|
| Mathematics<br>Teacher: |  |  |  |
| Homeroom:               |  |  |  |
|                         |  |  |  |

#### **IMPORTANT**

You will need to complete your name and school information in three places:

- 1. Section A
- 2. Section B
- 3. Answer Sheet

#### Section A: No Calculator Permitted

| Section A: No Calculator Permitted          |                        |  |  |  |  |  |
|---------------------------------------------|------------------------|--|--|--|--|--|
| 16 Selected Response 7 Constructed Response | 16 points<br>16 points |  |  |  |  |  |
| Total                                       | 32 points              |  |  |  |  |  |
| Section B: Calculator Pern                  | nitted                 |  |  |  |  |  |
| 24 Selected Response 9 Constructed Response | 24 points<br>24 points |  |  |  |  |  |
| Total                                       | 48 points              |  |  |  |  |  |
|                                             |                        |  |  |  |  |  |
| FINAL                                       | 80 POINTS              |  |  |  |  |  |

## Selected Response: No Calculator Permitted.

For items 1 – 16, circle the appropriate response on the answer sheet.

1. Which Venn diagram correctly shows the divisibility rules for 3 and 4?









## 2. Which describes the algebraic expression 5n + 2?

- (A) A number is doubled and increased by 5.
- (B) Half a number is increased by 5.
- (C) Five times a number is increased by 2.
- (D) One-fifth of a number is increased by 2.

#### 3. Which represents 8°C cooler than -3°C?

(A) 
$$(-8) - (-3) = (-5)$$

(B) 
$$(-3) - (-8) = (+5)$$

(C) 
$$(+8) - (-3) = (+11)$$

(D) 
$$(-3) - (+8) = (-11)$$

4. Calculate: 
$$(+5) + (-9)$$

(A) 
$$-14$$

## Grade 7 Common Mathematics Assessment Section A

- 5. Which represents (+2)?
  - (A) (+)(-)
  - (B) (+)(+)(-)
  - (C) (+)(+)(-)(-)(-)
  - $\widehat{(D)} \oplus \oplus \oplus \ominus \bigcirc$
- 6. Which represents (-2)?
  - (A) An elevator goes up 6 floors and then down 2 floors.
  - (B) Walk 4 steps forward and 6 steps back.
  - (C) The temperature rises 8°C from -2°C.
  - (D) Getting an allowance of \$12 is followed by spending \$10.
- 7. What is  $\frac{3}{20}$  as a percent?
  - (A) 3%
  - (B) 6%
  - (C) 12%
  - (D) 15%
- 8. Which is between  $\frac{3}{5}$  and 0.8?
  - (A) 0.4
- 0.6
- (B) 0.6
- $(C) \frac{7}{10}$
- (D)  $\frac{4}{5}$
- 9. Which represents front end estimation for the product  $8.3 \times 13.7$ ?
  - $(A) 8 \times 13 = 104$ 
    - (B) 8 × 14 = 112
    - (C)  $9 \times 13 = 117$
    - (D)  $9 \times 14 = 126$
- 10. Which has a repeating decimal?
  - (A)  $\frac{8}{25}$
  - (B)  $\frac{2}{5}$
  - (C)  $\frac{1}{2}$
  - $\begin{array}{c}
    2 \\
    \hline
    (D) \quad \frac{2}{3}
    \end{array}$

#### 11. Write in order from least to greatest:

(A) 0.35, 1, 
$$1\frac{4}{9}$$
,  $\frac{13}{10}$ 

(B) 
$$0.35$$
, 1,  $\frac{13}{10}$ ,  $1\frac{4}{9}$ 

(C) 0.35, 
$$\frac{13}{10}$$
, 1,  $1\frac{4}{9}$ 

(D) 
$$1\frac{4}{9}$$
, 1,  $\frac{13}{10}$ , 0.35

$$\frac{13}{10}$$
, 0.35, 1,  $1\frac{4}{9}$ 

$$0.35$$
 1 1.3 1.4  
 $0.35$  1  $\frac{13}{10}$  1 $\frac{4}{9}$ 

#### Which is modelled below? 12.



(A) 
$$\frac{7}{10} + \frac{4}{5} = \frac{11}{15}$$

(B) 
$$\frac{7}{10} + \frac{4}{5} = \frac{11}{10} = 1\frac{1}{10}$$

(C) 
$$\frac{7}{10} + \frac{4}{5} = \frac{15}{10} = 1\frac{1}{2}$$

(D) 
$$\frac{7}{10} + \frac{4}{5} = \frac{11}{5} = 2\frac{1}{5}$$

#### 13. Which is modelled below?



(A) 
$$\frac{1}{3} - \frac{4}{9} = \frac{7}{9}$$

(B) 
$$\frac{1}{3} - \frac{7}{9} = \frac{4}{9}$$

(C) 
$$\frac{4}{9} - \frac{1}{3} = \frac{7}{9}$$

(D) 
$$\frac{7}{9} - \frac{1}{3} = \frac{4}{9}$$

79 79 79

14. A student did not receive full marks for her solution below. In which step did she make her **first** error?

$$2\frac{4}{7}-1\frac{1}{3}$$

Step 1 = 
$$\frac{18}{7} - \frac{4}{3}$$

$$Step 2 = \frac{14}{4}$$

$$Step 3 = 3\frac{2}{4}$$

$$Step 4 = 3\frac{1}{2}$$

- (A) :
- (B) 2
- (C) 3
- (D) 4
- 15. Lisa spent  $\frac{2}{3}$  hour doing homework in the morning and  $\frac{2}{15}$  hour doing homework in the afternoon. What fraction of an hour did she spend doing homework?
  - (A)  $\frac{2}{9}$
  - (B)  $\frac{4}{15}$
  - (C)  $\frac{8}{15}$
  - $(D) \frac{4}{5}$

- 3+25
- 16. Noel and his friends shared an orange that was separated into 8 equal pieces. Noel ate 1 piece, one friend ate 2 pieces, and the other friend ate 4 pieces. What fraction of the orange is left?
  - (A)  $\frac{0}{8}$
  - $(B) \frac{1}{8}$ 
    - (C)  $\frac{7}{8}$
    - (D)  $\frac{8}{8}$

#### Grade 7 Common Mathematics Assessment Section A

#### **Constructed Response: No Calculator Permitted.**

Answers to be written on this paper in the space provided. Show all workings.

Name **two pairs** of integers that have a difference of (-1) and write each subtraction statement.

[2 points]



$$(+5) - (+6) = -1$$
 (1)  
 $(-9) - (-8) = -1$  (1)

$$(-9) - (-8) = -1$$

18. A submarine was 10 m below sea level when the captain spotted a whale 8 m below him.

[2 points]

Write an addition equation to determine the distance the whale was below the surface of the water.

$$d = (-10) + (-8)$$

b) Solve the equation using a method of your choice.

$$distance = (-10) + (-8)$$
= (-18)

The whale was 18m below the surface

19. Explain why 60% is **not** a good estimate for 35 out of 80.

[2 points]

Since 35/80 is less than half, the % should be less than 50%.

#### **Grade 7 Common Mathematics Assessment** Section A

20. Calculate: 
$$1.5 + 6.6 \div (0.4 + 2.6)$$

$$= 1.5 + 6.6 \div (3.0)$$

$$= 1.5 + 2.2$$

$$= 3.7$$

21. Janet's lunch bill at a restaurant was \$25.00, tax included. She decided to leave a 15% tip.

[2 points]

[3 points]

a) Calculate how much she left for a tip.

b) Calculate the total cost of her lunch.

### 22. Two people shared **one** pizza. Which statement below is true?

[2 points]

Model each situation to explain your thinking.



23. Calculate: 
$$2\frac{1}{6} - 1\frac{3}{4} + \frac{1}{2}$$

$$= 0 \quad 2\frac{3}{12} - 1\frac{9}{12} + \frac{6}{12}$$

$$= 0 \quad \frac{26}{12} - \frac{21}{12} + \frac{6}{12}$$

$$= \frac{2}{12} \cdot \frac{5}{12} + \frac{6}{12}$$

$$= \frac{2}{12} \cdot \frac{11}{12}$$

End of Section A.
Please raise your hand and your teacher will collect Section A.
You may now begin Section B.



# Grade 7 Common Mathematics Assessment

| Common Mathemati                               | cs Assessment          |  |  |  |  |
|------------------------------------------------|------------------------|--|--|--|--|
| June 12, 2                                     | 013                    |  |  |  |  |
| Section B: Calculate                           | ator Permitted         |  |  |  |  |
| Name: Mathematics Teacher:                     |                        |  |  |  |  |
| Homeroom:                                      |                        |  |  |  |  |
|                                                |                        |  |  |  |  |
| Section A: No Calcula                          | itor Permitted         |  |  |  |  |
| 16 Selected Response<br>7 Constructed Response | 16 points<br>16 points |  |  |  |  |
| Total                                          | 32 points              |  |  |  |  |
| Section B: Calculate                           | or Permitted           |  |  |  |  |
| 24 Selected Response<br>9 Constructed Response | 24 points<br>24 points |  |  |  |  |
| Total                                          | 48 points              |  |  |  |  |
|                                                | •                      |  |  |  |  |
|                                                |                        |  |  |  |  |
|                                                |                        |  |  |  |  |
| FINAL                                          | 80 POINTS              |  |  |  |  |

#### **Selected Response: Calculator Permitted.**

For items 24 - 47, circle the appropriate response on the answer sheet.

- 24. Evaluate  $\frac{c}{2} 8$  for c = 20.
  - (A) 2 (B) 6 (C) 18

32

- 20-8
- 25. Which algebraic expression has a numerical coefficient of 6?
  - (A) a+6+12(B) 6b+12(C) c+6(D) 2-6d

(D).

26. Which describes the relationship between the diagram number (d), and the number of toothpicks (t)?



Diagram #1 Diagram #2 Diagram #3

- (A) d = 3t(B) d = 3t + 2(C) t = 3d(D) t = 3d + 2
- 27. Out of 350 students at a junior high school, 80% participate in the breakfast program. How many students participate?
  - (A) 70 (B) 80 (C) 270 (D) 280  $80\% \times 350 = \frac{350}{.8}$  $80\% \times 350 = \frac{350}{.8}$
- 28. How many 0.6 L glasses can be filled from a 1.8 L jug of lemonade?
  - (A) 1 (B) 2 (C) 3 (D) 4
- 29. A circle has a radius of 8 cm. Estimate its area.
  - (A)  $24 cm^2$ (B)  $48 cm^2$ (C)  $64 cm^2$ (D)  $192 cm^2$   $A = 3 \cdot 7 \cdot 7$   $= 3 \cdot 8 \cdot 8$

#### Grade 7 Common Mathematics Assessment Section B

- The area of a triangle is  $24 \ cm^2$ . What is the area of a parallelogram with the same 30. base length and height as the triangle?
  - $12 cm^2$ (A)
  - $24 cm^2$ (B)
  - $48 cm^2$
  - $75 cm^2$

- p = 2.0 = 2(24) = 48.
- The wheels on Brittney's bicycle have a diameter of  $0.5\ m$  . If she rides a total 31. distance of  $500 \, m$ , how many complete turns does the wheel make?



$$C = \pi \cdot d = 3.14(0.5)$$
  
= 1.57  
 $500 \div 1.57 = 318.47$ 

- 250 318
  - 785
- (D) 1000
- Jeff exercises 60 hours every month. How many hours does he spend swimming? 32.

Jeff's Monthly Exercise



$$35\%$$
 960  $\frac{.35}{60}$ 

- (A) 21 BI 27
  - (C) 35
  - (D) 39
- The solution to finding the area of the given triangle is incorrect. In which step is the 33. first error made?



- Step 1:
- $A = \frac{bh}{2}$
- Step 2:
- $A = \frac{10 \, cm \times 6 \, cm}{2}$
- Step 3:
- $A = \frac{60 \, cm^2}{2}$
- Step 4:
- A = 30 cm

- 1 2 3
- 4

Calculate the area of parallelogram ABCD. 34.



- $21 cm^2$ (A)
- $24 cm^2$ (B)
- $42 cm^2$
- $48 cm^2$
- 35. What is the value of a?



$$a+14 = 12+18$$
  
 $a+14 = 30$   
 $a=16$ 

- 14 (A) 16 (B)
- 30
- (D) 44
- Which value of n makes the equation 3n 4 = 8 true? 36.

$$3n = 8+4$$
  
 $3n = 12$ 

Overnight the temperature dropped  $7^{\circ}\text{C}$  to  $-20^{\circ}\text{C}$  . Which equation could be used to 37. find the original temperature?

$$(A) t-7=(-20)$$

$$t - 7 = -20$$

- (B) t + (-20) = 7
- (C) t - (-7) = (-20)
- t + 20 = (-7)(D)
- Ricky worked h hours. Shawn worked twice as many hours as Ricky. If Shawn 38. worked a total of 30 hours, which equation could be used to find the number of hours that Ricky worked?

$$(A) \qquad \frac{2}{h} = 30$$

$$\begin{array}{cccc} h & 2h & 2h = 30 \\ 30 & \overline{z} & \overline{z} \end{array}$$

$$\frac{\text{(B)}}{2} = 30$$

$$(C) 2h = 30$$

#### Grade 7 Common Mathematics Assessment Section B

- 39. Erin had a mean mark of 85% on her math tests this year. Then she received a grade of 92%. How did it affect the mean?
  - (A) The mean increased.
    - (B) The mean decreased.
    - (C) There was no change in the mean.
    - (D) The test was not used because it was an outlier.
- 40. What is the outlier in the given data set?

- (A) 32
- (B) 46
- (C) 56
- (D) 84
- 41. On a tetrahedron with sides labelled 1 to 4, what is the probability of **not** rolling a 4?
  - (A) 4% (B) 25% (C) 50% (D) 75%



- 42. Kathy has three shirts that are yellow, purple, and blue, respectively. The shirts can be paired with jeans, dress pants, or a skirt. How many outfits can be created?
  - (A) 3
  - (B) 6
  - (C) 9 (D) 12

- 3(3) = 9
- 45
- PE
- ΒŚ

43. Which transformation is demonstrated?



- (A) 90° CCW rotation about the origin
- (B) 90° CW rotation about the origin
- (C) reflection in the y-axis
- (D) translation 2 units left

- 44. What is a line that intersects another line at right angles and divides it into two equal parts?
  - (A) angle bisector
  - (B) parallel line
  - (C) perpendicular bisector
  - (D) perpendicular lines
- 45. Which statement is true?



- (A)  $\overline{AB} \parallel \overline{GB}$
- (B)  $\overline{AB} \perp \overline{GF}$
- (C)  $\overline{CD} \perp \overline{BE}$
- (D)  $\overline{GB} \parallel \overline{AF}$
- 46. What are the coordinates of point P?



- (A) (-3,-1)
- (B) (-3,1)
  - (C) (-1, -3)
  - (D) (1,-3)
- 47. Which is true?



- (A) Figure A is a reflection of figure D.
- (B) Figure C is a 90° CCW rotation of Figure B.
- (C) Figure A is a translation of Figure B, 9 left and 3 up.
- (D) Figure B is a translation of Figure A, 8 right and 3 down.

#### **Constructed Response: Calculator Permitted.**

Answers to be written on this paper in the space provided. Show all workings.

48. Solve, using a method of your choice:

$$2n - 3 = 1$$

[2 points]



$$2n-3=1$$

 $\frac{\partial R}{\partial n} = 2n - 3 = 1 \qquad \text{of Systematic}$   $0 + 2n - 3 + 3 = 1 + 3 \qquad \text{Trial}.$ 

$$0 2n-3+3=1+3$$



$$n = 2$$

- - 到 n = 2

- Eastern Junior High is ordering t-shirts for Pink Day. The t-shirt supplier charges a 49. one-time fee of \$20 to create a logo and \$5 for each t-shirt purchased.
  - a) Complete the table:

[1 point]

b) Graph the relation. Label the axes.

[2 points]

|     | Number of t-shirts (t) | Total Cost<br>(c) |  |  |
|-----|------------------------|-------------------|--|--|
| (1) | 1                      | 25                |  |  |
|     | 2                      | 30                |  |  |
|     | 3                      | 3 <i>5</i>        |  |  |
|     | 4                      | 40                |  |  |

- C50 40 35 30 25 20 15 , o 5 3 5 # t-shirts
- c) Write the equation for the cost of t-shirts and use it to calculate the total cost for [2 points] 100 t-shirts.

$$C = 20 + 5t^{0}$$
  
 $C = 20 + 5(100)$ 

$$C = {}^{\#}520 \left(\frac{1}{2}\right)$$

C = # 520 (2) Total cost for 100

t-shirts in \$520.

$$\frac{x}{3} = 5$$

$$\therefore x = 3.5 \quad \left(\frac{1}{2}\right)$$

$$3. \frac{\lambda}{3} = 3.5 \tag{2}$$

$$\lambda = 15 \tag{2}$$

$$LS = \frac{\chi}{3}$$

$$= \frac{15}{3} = \frac{1}{2}$$

$$= 5 = RS.$$

51. A grade 7 class surveyed 20 students to find out their favourite flavour of ice cream. They will use the data in the table to construct a circle graph.

[2 points]

| Flavour      | # of Students | Fraction | Percent | Central Angle |  |  |
|--------------|---------------|----------|---------|---------------|--|--|
| Vanilla      | 9             |          |         | B             |  |  |
| Chocolate    | 5             |          |         |               |  |  |
| Cookie Dough | 6             |          |         |               |  |  |
| TOTAL        | 20            |          |         |               |  |  |

Explain how to find the measure of the central angle for **Vanilla** only.

First find the fraction of students who like vanilla:

$$\frac{9}{20}$$

Then convert the fraction 20 into a percent by x5 45 writing an equivalent fraction out of 100: 20 100

Then multiply 45% by 360° to find the x5

Central angle: 45% x360° = 162°. = 45%.

52. Nora flips a coin and spins a three-coloured spinner. Draw a tree diagram to show all [2 points] possible outcomes.

\$1 Blue Red



53. A 12 m by 18 m park has five identical circular flower beds.

[4 points]



a) What is the area of each flower bed?

(a) 
$$F = 3$$
  
(b)  $A = \pi r^2 = 3.14 \times 3^2 = 28.26 \text{ m}^2$ 

b) How many square metres of grass are required to cover the shaded area?

(1) Rectangle Area = 
$$b \times h = 18 \times 12 = 216 m^2$$
  
(1) 5 Circles =  $5(28.26) = 141.3 m^2$   
(1) Grass Area =  $216 - 141.3 = 74.7 m^2$ 

54. During one week in August, the highest temperature was recorded each day:

[2 points]

Calculate the mean, median, and mode.

mean: 
$$(16+23+26+28+23+27+25)$$
 =  $168 \div 7 = 24$ 

Mean 
$$24^{\circ}$$
C (1)

Median  $35^{\circ}$ C (1)

Mode  $23^{\circ}$ C (1)

55. Draw  $\angle ABC$  to measure 110°. Bisect the angle.

[2 points]



56. a) Plot and label points A, B, and C to form a triangle.

[3 points]

$$A(-3,0)$$
  $B(-2,6)$   $C(1,4)$ 

- b) Reflect  $\triangle ABC$  in the x-axis. Label the image.
- c) Translate  $\Delta A'B'C'$  6 units right and 3 units up. Label the final image.



End of Grade 7 Common Mathematics Assessment. Have a safe and happy summer!

#### Grade 7 Common Mathematics Assessment Answer Sheet

|                                      |     |                         |        |              | Name:<br>Mathematics Teacher:<br>Homeroom: |                                         |              |                          |                          |   |  |
|--------------------------------------|-----|-------------------------|--------|--------------|--------------------------------------------|-----------------------------------------|--------------|--------------------------|--------------------------|---|--|
| Section A<br>No Calculator Permitted |     |                         | tion B |              |                                            | *************************************** |              |                          |                          |   |  |
| . C. Mitteu                          |     | Calculator Permitted    |        |              |                                            |                                         |              |                          |                          |   |  |
| 1.                                   | A   | В                       | C      | D            | 24.                                        | A                                       | В            | С                        | D                        |   |  |
| 2.                                   | Α   | В                       | (c)    | D            | 25.                                        | Α                                       | $\bigcirc$ B | С                        | D                        |   |  |
| 3.                                   | Α   | В                       | С      | D            | 26.                                        | Α                                       | В            | С                        | $\widehat{\mathbf{D}}$   |   |  |
| 4.                                   | Α   | (B)                     | С      | D            | 27.                                        | Α                                       | В            | С                        | $\widecheck{\mathbb{D}}$ |   |  |
| 5.                                   | Α   | В                       | С      | (D)          | 28.                                        | Α                                       | В            | (C)                      | D                        |   |  |
| 6.                                   | Α   | (B)                     | С      | D            | 29.                                        | Α                                       | В            | С                        | (D)                      |   |  |
| 7.                                   | Α   | В                       | C      | (D)          | 30.                                        | Α                                       | В            | $(\widehat{\mathbf{c}})$ | D                        |   |  |
| 8.                                   | A   | В                       | (C)    | D            | 31.                                        | Α                                       | $\bigcirc$ B | C                        | D                        |   |  |
| 9.                                   | (A) | В                       | С      | D            | 32.                                        | $(\widehat{\mathbf{A}})$                | В            | С                        | D                        |   |  |
| 10.                                  | Α   | В                       | С      | (D)          | 33.                                        | $\widetilde{\mathbf{A}}$                | $\bigcirc$ B | С                        | D                        |   |  |
| 11.                                  | Α   | (B)                     | C      | D            | 34.                                        | Α                                       | В            | (c)                      | D                        |   |  |
| 12.                                  | Α   | В                       | (c)    | D            | 35.                                        | Α                                       | $\bigcirc$ B | C                        | D                        |   |  |
| 13.                                  | Α   | B                       | С      | $\bigcirc$ D | 36.                                        | Α                                       | В            | (C)                      | D                        |   |  |
| 14.                                  | Α   | $(\mathbf{B})$          | С      | D            | 37.                                        | $\bigcirc$ A                            | В            | C                        | D                        |   |  |
| 15.                                  | Α   | В                       | С      | $\bigcirc$ D | 38.                                        | Α                                       | В            | (c)                      | D                        | , |  |
| 16.                                  | Α   | $\overline{\mathbf{B}}$ | С      | D            | 39.                                        | A                                       | В            | С                        | D                        |   |  |
|                                      |     |                         |        |              | 40.                                        | Α                                       | В            | С                        | $\widehat{\mathbf{D}}$   |   |  |
|                                      |     |                         |        |              | 41.                                        | Α                                       | В            | С                        | (D)                      |   |  |
|                                      |     |                         |        |              | 42.                                        | A                                       | В            | (C)                      | D                        |   |  |
|                                      |     |                         |        |              | 43.                                        | (A)                                     | В            | C                        | D                        |   |  |
|                                      |     |                         |        |              | 44.                                        | Α                                       | В            | <u>(C)</u>               | D                        |   |  |
|                                      |     |                         |        |              | 45.                                        | Α                                       | В            | (c)                      | D                        |   |  |
|                                      |     |                         |        | •            | 46.                                        | Α                                       | $\bigcirc$ B | С                        | D                        |   |  |
|                                      |     |                         |        |              | 47.                                        | Α                                       | В            | С                        | D                        |   |  |

Page 1 of 1
Eastern School District
June 2013